If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+24x+11=0
a = 1; b = 24; c = +11;
Δ = b2-4ac
Δ = 242-4·1·11
Δ = 532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{532}=\sqrt{4*133}=\sqrt{4}*\sqrt{133}=2\sqrt{133}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{133}}{2*1}=\frac{-24-2\sqrt{133}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{133}}{2*1}=\frac{-24+2\sqrt{133}}{2} $
| 4k-9k=90 | | 3w=8/2=25 | | 7/10(f)=49 | | 3y-4=2y+8-5y | | x(3+x)=1120 | | x^2−16x+100=0 | | 17=-13x-8x | | 9.35/2=t | | x+31/3=81/2 | | 5x=5x-3 | | d(d+2)=1120 | | F(a)+9=6(a)+9+7 | | 1/2(6a+8)=16 | | 11.50-1.50=t | | x(x+2)=55 | | 20x+7-3=13x+19 | | (4-4+5)x=25 | | 3(g-7)=+g=3 | | 94-4+5)x=25 | | 3.14=9420y | | x=15+(1/4*x) | | 4(x-2)+2=2(2x-4)+2 | | 1/2t+7=13 | | 6w-5+8w-2-3=9w-24 | | (x)+8=240 | | (2x/3)-4=(3x/2)+3x | | 2y-2(6-y)=6(3y+2) | | x+8=240 | | 206=81-v | | 6w-5+8w-23=9w | | x=2.5x-2.5 | | 102-y=201 |